Skip to content

Benchmark on Intel N100

A second benchmark was conducted using an Intel N100 CPU to evaluate performance on lower-power devices.

Exact Search Time (ms) (English)

Text SizeLinearGPUBigram
5381.041.020.20
8291.471.550.28
17122.422.540.24
30014.264.320.37
37485.214.980.46

Fuzzy Search Time (ms) (English)

Text SizeLinearGPUBigram
53821.148.240.56
82931.6710.060.88
171265.7614.930.98
3001115.5620.401.16
3748142.1125.721.32

Fuzzy Search Time (ms) (Japanese)

Text SizeLinearGPUBigram
4767.607.450.32
78910.706.670.45
130517.437.250.44
239431.178.200.57
302038.899.060.75

Indexing Time (ms) (English)

Text SizeLinearGPUBigram
538126.14117.40261.80
829188.64185.20406.52
1712346.98362.18862.26
3001592.98617.081,686.10
3748744.78737.061,892.40

Index Size (Gzipped, kbyte) (English)

Text SizeLinearGPUBigram
53819119191
829294294131
1712607607247
300110581058411
374813241324506

Index Size (Gzipped, kbyte) (Japanese)

Text SizeLinearGPUBigram
476165165136
789272272229
1305452452366
2394837837644
302010531053813

Conclusion

In summary, the benchmarks conducted on the Intel N100 CPU demonstrate the performance characteristics of different indexing strategies. While the LinearIndex provides reliable performance, the GPU and HybridBigramInvertedIndex indexes offer significant speed improvements, especially for larger datasets. When selecting an index type, consider the specific requirements of your application and the hardware capabilities available.